Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent Pdes: Part I by Ibrahim Ekren,

نویسندگان

  • NIZAR TOUZI
  • JIANFENG ZHANG
چکیده

The main objective of this paper and the accompanying one [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint] is to provide a notion of viscosity solutions for fully nonlinear parabolic path-dependent PDEs. Our definition extends our previous work [Ann. Probab. (2014) 42 204–236], focused on the semilinear case, and is crucially based on the nonlinear optimal stopping problem analyzed in [Stochastic Process. Appl. (2014) 124 3277–3311]. We prove that our notion of viscosity solutions is consistent with the corresponding notion of classical solutions, and satisfies a stability property and a partial comparison result. The latter is a key step for the well-posedness results established in [Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II (2012) Preprint]. We also show that the value processes of path-dependent stochastic control problems are viscosity solutions of the corresponding path-dependent dynamic programming equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscosity Solutions of Fully Nonlinear Parabolic Path Dependent Pdes: Part Ii by Ibrahim Ekren,

In our previous paper [Ekren, Touzi and Zhang (2015)], we introduced a notion of viscosity solutions for fully nonlinear path-dependent PDEs, extending the semilinear case of Ekren et al. [Ann. Probab. 42 (2014) 204– 236], which satisfies a partial comparison result under standard Lipshitz-type assumptions. The main result of this paper provides a full, well-posedness result under an additional...

متن کامل

Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs

We prove a comparison result for viscosity solutions of (possibly degenerate) parabolic fully nonlinear path-dependent PDEs. In contrast with the previous result in Ekren, Touzi & Zhang [10], our conditions are easier to check and allow for the degenerate case, thus including first order path-dependent PDEs. Our argument follows the regularization method as introduced by Jensen, Lions & Sougani...

متن کامل

A numerical algorithm for a class of BSDE via branching process

We generalize the algorithm for semi-linear parabolic PDEs in Henry-Labordère [11] to the non-Markovian case for a class of Backward SDEs (BSDEs). By simulating the branching process, the algorithm does not need any backward regression. To prove that the numerical algorithm converges to the solution of BSDEs, we use the notion of viscosity solution of path dependent PDEs introduced by Ekren, Ke...

متن کامل

The Scaling Limit of the Interface of the Continuous - Space Symbiotic Branching Model

The scaling limit of the interface of the continuous-space symbiotic branching model JOCHEN BLATH, MATTHIAS HAMMER AND MARCEL ORTGIESE 807 A noncommutative martingale convexity inequality . . . . . . . ÉRIC RICARD AND QUANHUA XU 867 Stuck walks: A conjecture of Erschler, Tóth and Werner . . . . . . . . . . . . . . . . . . . . . DANIEL KIOUS 883 Generalization of the Nualart–Peccati criterion . ...

متن کامل

ar X iv : 0 90 6 . 14 58 v 1 [ m at h . A P ] 8 J un 2 00 9 DIFFERENCE - QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO - PDE

We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016